算法:贪心算法
贪婪算法(贪心算法)是指在对问题进行求解时,在每一步选择中都采取最好或者最优(即最有利)的选择,从而希望能够导致结果是最好或者最优的算法。
贪婪算法所得到的结果往往不是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果。
- 贪婪算法并没有固定的算法解决框架,算法的关键是贪婪策略的选择,根据不同的问题选择不同的策略。
- 必须注意的是策略的选择必须具备无后效性,即某个状态的选择不会影响到之前的状态,只与当前状态有关,所以对采用的贪婪的策略一定要仔细分析其是否满足无后效性。
比如前边介绍的最短路径问题(广度优先、狄克斯特拉)都属于贪婪算法,只是在其问题策略的选择上,刚好可以得到最优解。
基本思路:
- 建立数学模型来描述问题;
- 把求解的问题分成若干个子问题;
- 对每一子问题求解,得到子问题的局部最优解;
- 把子问题对应的局部最优解合成原来整个问题的一个近似最优解;
题目:行相等的最少多米诺旋转
url:https://leetcode-cn.com/problems/minimum-domino-rotations-for-equal-row/
1 | 在一排多米诺骨牌中,A[i] 和 B[i] 分别代表第 i 个多米诺骨牌的上半部分和下半部分。(一个多米诺是两个从 1 到 6 的数字同列平铺形成的 —— 该平铺的每一半上都有一个数字。) |
示例1:
输入:A = [2,1,2,4,2,2], B = [5,2,6,2,3,2]
输出:2
解释:
图一表示:在我们旋转之前, A 和 B 给出的多米诺牌。
如果我们旋转第二个和第四个多米诺骨牌,我们可以使上面一行中的每个值都等于 2,如图二所示。
示例 2:
输入:A = [3,5,1,2,3], B = [3,6,3,3,4]
输出:-1
解释:
在这种情况下,不可能旋转多米诺牌使一行的值相等。
提示:
1 <= A[i], B[i] <= 6
2 <= A.length == B.length <= 20000
分析
分别统计A数组和B数组中每种牌出现的次数;
如果 ”A中出现的次数 x + B中出现的次数 y“ >= A数组的长度,则算是一种解;
找出所有的解,并返回 最小的 x 或者最小的 y;
如果没有满足条件的解则返回 -1;
上述求出的解是伪最优解,还需要逐个确认每个解是不是真最优解
Java解法
1 | class Solution { |